Upper critical dimension of the Kardar - Parisi - Zhang equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1998 J. Phys. A: Math. Gen. 31 L93
(http://iopscience.iop.org/0305-4470/31/5/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.104
The article was downloaded on 02/06/2010 at 07:21

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Upper critical dimension of the Kardar-Parisi-Zhang equation

J K Bhattacharjee
Department of Theoretical Physics, Indian Association for Cultivation of Science, Jadavpur, Calcutta 700 032, India

Received 4 August 1997, in final form 16 December 1997

Abstract

A recent mapping of the interface roughening problem to directed polymers by Lässig and Kinzelbech has shown that the upper critical dimension of the Kardar-Parisi-Zhang equation is less than or equal to four. By combining the mode-coupling technique with a small- α (roughening exponent) expansion, we show that the upper critical dimension is four. The validity of this conclusion is obviously limited by the applicability of the mode-coupling technique to the strong-coupling regime.

A much studied model of interface dynamics is the Kardar-Parisi-Zhang (KPZ) model [1-3] where the height $h(r, t)$ of the interface above a D-dimensional substrate satisfies the equation of motion,

$$
\begin{align*}
& \frac{\partial h}{\partial t}=\nabla^{2} h+\lambda(\boldsymbol{\nabla} h)^{2}+\eta \\
& \left\langle\eta(\boldsymbol{r}, t) \eta\left(\boldsymbol{r}^{\prime}, t^{\prime}\right)\right\rangle=2 D_{0} \delta^{(D)}\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \delta\left(t-t^{\prime}\right) \tag{1}
\end{align*}
$$

For $D<2$, the model gives a rough interface for all values of λ. For $D>2$, the consequences are less well understood. A rough phase exists for $\lambda>\lambda_{\mathrm{c}}$ (a critical value) for $2<D<D_{\mathrm{c}}$, but cannot be obtained from perturbation theory.

This has led to the development of new techniques to deal with the strong-coupling problem. The task of a theory is to calculate the roughness exponent α. It is defined via the response function $G(k, \omega)$ and the correlation function $C(k, \omega)$

$$
\begin{align*}
\delta^{(D)}\left(\boldsymbol{k}+\boldsymbol{k}^{\prime}\right) \delta\left(\omega+\omega^{\prime}\right) G(k, \omega) & =\left\langle\frac{\delta h(\boldsymbol{k}, \omega)}{\delta \eta\left(\boldsymbol{k}^{\prime}, \omega^{\prime}\right)}\right\rangle \\
\delta^{(D)}\left(\boldsymbol{k}+\boldsymbol{k}^{\prime}\right) \delta\left(\omega+\omega^{\prime}\right) C(k, \omega) & =\left\langle h(\boldsymbol{k}, \omega) h\left(\boldsymbol{k}^{\prime}, \omega^{\prime}\right)\right\rangle . \tag{2}
\end{align*}
$$

The response and correlation functions have the scaling form

$$
\begin{align*}
& G(k, \omega)=k^{-z} g\left(\frac{\omega}{k^{z}}\right) \tag{3a}\\
& C(k, \omega)=k^{-D-2 \alpha-z} f\left(\frac{\omega}{k^{z}}\right) \tag{3b}
\end{align*}
$$

The dynamic exponent z sets the true scale. A rough surface corresponds to $\alpha>0$.
One expects $\alpha=0$ at $D=D_{\mathrm{c}}$. The task of the theory is to predict α as a function of D as well as the critical value D_{c}. The value of D_{c} has been controversial.

The mode-coupling theories [4-6], which are those that are capable of producing a value of D_{c}, have yielded different results under different handlings, including one [7] with $D_{\mathrm{c}}=\infty$. Recently, Lässig and Kinzelbach [8] have adopted a completely different point of view. They map the KPZ problem onto directed polymers with quenched disorder and find $D_{\mathrm{c}} \leqslant 4$. Our aim is to show that in fact the mode-coupling theories are in agreement with this result. In this letter, based on the work of Bouchaud and Cates [5] and the mode-coupling-perturbative-renormalization-group correspondence in dynamic critical phenomenon, we propose a new technique for obtaining α and D_{c}. Our idea is to perform a perturbation theory around $\alpha=0$. We will show that a loop expansion can be converted into an expansion in powers of α. The response function in the scaling limit is

$$
\begin{equation*}
G^{-1}(k, \omega)=-\mathrm{i} \omega+\Sigma(k, \omega) \tag{3}
\end{equation*}
$$

with $\Sigma(k, \omega)=k^{z} \sigma\left(\omega / k^{z}\right)$. The zero-frequency self-energy (in other words, the relaxation rate) is

$$
\begin{equation*}
\Sigma(k, 0)=\Gamma k^{z} \tag{4}
\end{equation*}
$$

and the zero-frequency correlation function can be written as

$$
\begin{equation*}
C(k, 0)=D k^{-2 \alpha-D-z} \tag{5}
\end{equation*}
$$

Our contention is that the universal amplitude ratio $\Gamma^{2} / D \lambda^{2}$ can be written from the diagrammatics of $G^{-1}(k, \omega)$ as

$$
\begin{equation*}
\Gamma^{2} / D \lambda^{2}=\sum_{n=1}^{\infty} I_{n}(D, \alpha) \alpha^{n-1} \tag{6}
\end{equation*}
$$

and from the diagrammatics of $C(k, \omega)$ as

$$
\begin{equation*}
\Gamma^{2} / D \lambda^{2}=\sum_{n=1}^{\infty} J_{n}(D, \alpha) \alpha^{n-2} \tag{7}
\end{equation*}
$$

The integer n labels the loops and thus equations (6) and (7) stand for a loop-wise expansion for the universal number. We have used $\alpha+z=2$ which follows from Galilean invariance and hence must always be respected. Equating $\Gamma^{2} / D \lambda^{2}$ from equations (6) and (7) yields α as a function of D.

We explain the technique by working with $\Sigma(k, \omega)$. The single-loop expression is
$\Sigma(k, \omega)=\lambda^{2} \int \frac{\mathrm{~d} \omega^{\prime}}{2 \pi} \frac{\mathrm{~d}^{D} p}{(2 \pi)^{D}}(\boldsymbol{p} \cdot \boldsymbol{q})(\boldsymbol{k} \cdot \boldsymbol{p}) C\left(p, \omega^{\prime}\right) G\left(q, \omega-\omega^{\prime}\right) \quad \boldsymbol{p}+\boldsymbol{q}=\boldsymbol{k}$.
The frequency convolution is the tricky affair and gives rise to our first key observation. If one is at $D=D_{\text {c }}$, where $\alpha=0$, the line shape is Lorentzian and an expansion about $\alpha=0$ implies an expansion of the line shape about a Lorentzian form. With

$$
C(k, \omega)=D k^{-D-2 \alpha}\left[G(k, \omega)+G^{*}(k, \omega)\right]
$$

we can, correct to first-order deviations from the Lorentzian shape, write equation (8) after some algebra as

$$
\begin{equation*}
\Sigma(k, \omega)=\lambda^{2} \int \frac{\mathrm{~d}^{D} p}{(2 \pi)^{D}} \frac{(\boldsymbol{p} \cdot \boldsymbol{q})(\boldsymbol{k} \cdot \boldsymbol{p})}{p^{2 \alpha+D}} \frac{D}{-\mathrm{i} \omega+\Sigma(q, \mathrm{i} \Sigma(q))+\Sigma(p, \mathrm{i} \Sigma(p))} . \tag{9}
\end{equation*}
$$

Writing $\Sigma(k, \mathrm{i} \Sigma(k))=\Gamma k^{z}$ and $\Sigma(k, 0)=\Gamma_{0} k^{z}$,

$$
\begin{equation*}
\frac{\Gamma^{2}}{D \lambda^{2}}=\int \frac{\mathrm{d}^{D} p}{(2 \pi)^{D}} \frac{(\mathbf{1} \cdot \boldsymbol{p})[\boldsymbol{p} \cdot(\mathbf{1}-\boldsymbol{p})]}{p^{2 \alpha+D}\left[\left(\Gamma_{0} / \Gamma\right)+p^{z}+|\mathbf{1}-\boldsymbol{p}|^{z}\right]} \tag{10}
\end{equation*}
$$

The distinction between Γ and Γ_{0} is $\mathrm{O}(\alpha)$.

At this point we make the second key observation. The region of momentum space which dominates the integral in equation (10) for $\alpha \rightarrow 0$ is the region $p \gg 1$.

Making the appropriate approximates in the integrand, the right-hand side of equation (10) is

$$
\frac{\alpha}{2 D} \int_{p>1} \frac{\mathrm{~d}^{D} p}{p^{D+\alpha}}
$$

and thus we can write

$$
\begin{gather*}
\frac{\Gamma^{2}}{D \lambda^{2}}=\frac{\alpha}{2 D} \int_{p>1} \frac{\mathrm{~d}^{D} p}{(2 \pi)^{D}} \frac{1}{p^{D+\alpha}}+\left[\int \frac{\mathrm{d}^{D} p}{(2 \pi)^{D}} \frac{(\mathbf{1} \cdot \boldsymbol{p})[\boldsymbol{p} \cdot(\mathbf{1}-\boldsymbol{p})]}{p^{2 \alpha+D}\left(\left(\Gamma_{0} / \Gamma\right)+p^{z}+|\mathbf{1}-\boldsymbol{p}|^{z}\right)}\right. \\
\left.-\frac{\alpha}{2 D} \int \frac{\mathrm{~d}^{D} p}{(2 \pi)^{D}} \frac{1}{p^{D+2 \alpha}}\right] \tag{11}
\end{gather*}
$$

The first term on the right-hand side of equation (11) yields D^{-1} and the terms in the square brackets have to be evaluated as $\alpha \rightarrow 0$. This yields the correction to the first term.

The integrand in the square brackets being required for $\alpha \rightarrow 0$, it is permissible to set $\Gamma_{0}=\Gamma$ in evaluating the integral to this order of accuracy. The $\mathrm{O}(\alpha)$ term so obtained takes care of the self-energy, insertion-type, two-loop graphs. To complete the $\mathrm{O}(\alpha)$ term, one needs the leading-order contribution from the vertex-correction-type, two-loop graphs. For leading order these are not necessary. To leading order, equation (11) yields

$$
\begin{equation*}
\frac{\Gamma^{2}}{D \lambda^{2}}=\frac{S_{D}}{(2 \pi)^{D}} \frac{1}{2 D} \tag{12}
\end{equation*}
$$

where S_{D} is the surface area of a D-dimensional sphere.
Turning now to the correlation function, the single-loop, self-consistent answer is

$$
\begin{equation*}
C(k, \omega)=\frac{\lambda^{2}}{2}|G(k, \omega)|^{2} \int \frac{\mathrm{~d}^{D} p}{(2 \pi)^{D}} \frac{\mathrm{~d} \omega^{\prime}}{2 \pi} C\left(p, \omega^{\prime}\right) C\left(k-p, \omega-\omega^{\prime}\right) . \tag{13}
\end{equation*}
$$

Carrying out manipulations identical to those for $\Sigma(k, \omega)$ and equating the zerofrequency parts, we obtain

$$
\begin{equation*}
\frac{\Gamma^{2}}{D \lambda^{2}}=\frac{1}{2} \int \frac{\mathrm{~d}^{D} p}{(2 \pi)^{D}} \frac{[(\mathbf{1}-\boldsymbol{p}) \cdot \boldsymbol{p}]^{2}}{p^{D+2 \alpha}|\mathbf{1}-\boldsymbol{p}|^{D+2 \alpha}} \frac{1}{\left[p^{2-\alpha}+|\mathbf{1}-\boldsymbol{p}|^{2-\alpha}\right]} \tag{14}
\end{equation*}
$$

Once again, we extract the high momentum ($p \gg 1$) part, and

$$
\begin{align*}
\frac{\Gamma^{2}}{D \lambda^{2}}=\frac{1}{4} & \int_{p>1} \frac{\mathrm{~d}^{D} p}{(2 \pi)^{p}} \frac{1}{p^{2 D+3 \alpha-2}}+\mathrm{O}(\alpha, D-2) \\
& =\frac{1}{4} \frac{S_{D}}{(2 \pi)^{D}} \frac{1}{D-2+3 \alpha}+\text { higher order terms. } \tag{15}
\end{align*}
$$

Equating $\Gamma^{2} / D \lambda^{2}$ from equations (12) and (15),

$$
\begin{equation*}
D=2 D-4+6 \alpha \quad \text { or } \quad \alpha=\frac{4-D}{6} \tag{16}
\end{equation*}
$$

It is clear from the above result that α vanishes at $D=4$, which is consequently the upper critical dimension for the problem. It is interesting to note that at $D=1$ our formula gives the known exact result. This could, however, be accidental.

References

[1] Kardar M, Parisi G and Zhang Y C 1986 Phys. Rev. Lett. 56889
[2] Krug J and Spohn H 1990 Solids Far From Equilibrium ed C Godréche (Cambridge: Cambridge University Press)
[3] Halpin-Healy T and Zhang Y C 1995 Phys. Rep. 254215
[4] Schwartz M and Edwards S F 1992 Europhys. Lett. 20310
[5] Bouchaud J P and Cates M E 1993 Phys. Rev. E 47 R1455
[6] Doherty J P, Moore M A, Bray A J and Kim J M 1994 Phys. Rev. Lett. 722041
[7] Tu Y 1994 Phys. Rev. Lett. 733109
[8] Lässig M and Kinzelbach H 1997 Phys. Rev. Lett. 78903

