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Abstract. A recent mapping of the interface roughening problem to directed polymers by
Lässig and Kinzelbech has shown that the upper critical dimension of the Kardar–Parisi–Zhang
equation is less than or equal to four. By combining the mode-coupling technique with a small-α

(roughening exponent) expansion, we show that the upper critical dimension is four. The validity
of this conclusion is obviously limited by the applicability of the mode-coupling technique to
the strong-coupling regime.

A much studied model of interface dynamics is the Kardar–Parisi–Zhang (KPZ) model
[1–3] where the heighth(r, t) of the interface above aD-dimensional substrate satisfies the
equation of motion,

∂h

∂t
= ∇2h+ λ(∇h)2+ η

〈η(r, t)η(r′, t ′)〉 = 2D0δ
(D)(r − r′)δ(t − t ′). (1)

For D < 2, the model gives a rough interface for all values ofλ. For D > 2, the
consequences are less well understood. A rough phase exists forλ > λc (a critical value)
for 2< D < Dc, but cannot be obtained from perturbation theory.

This has led to the development of new techniques to deal with the strong-coupling
problem. The task of a theory is to calculate the roughness exponentα. It is defined via
the response functionG(k, ω) and the correlation functionC(k, ω)

δ(D)(k + k′)δ(ω + ω′)G(k, ω) =
〈
δh(k, ω)

δη(k′, ω′)

〉
δ(D)(k + k′)δ(ω + ω′)C(k, ω) = 〈h(k, ω)h(k′, ω′)〉. (2)

The response and correlation functions have the scaling form

G(k, ω) = k−zg
(
ω

kz

)
(3a)

C(k, ω) = k−D−2α−zf
(
ω

kz

)
. (3b)

The dynamic exponentz sets the true scale. A rough surface corresponds toα > 0.
One expectsα = 0 atD = Dc. The task of the theory is to predictα as a function of

D as well as the critical valueDc. The value ofDc has been controversial.
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The mode-coupling theories [4–6], which are those that are capable of producing a
value of Dc, have yielded different results under different handlings, including one [7]
with Dc = ∞. Recently, L̈assig and Kinzelbach [8] have adopted a completely different
point of view. They map the KPZ problem onto directed polymers with quenched disorder
and findDc 6 4. Our aim is to show that in fact the mode-coupling theories are in
agreement with this result. In this letter, based on the work of Bouchaud and Cates [5] and
the mode-coupling–perturbative-renormalization-group correspondence in dynamic critical
phenomenon, we propose a new technique for obtainingα andDc. Our idea is to perform
a perturbation theory aroundα = 0. We will show that a loop expansion can be converted
into an expansion in powers ofα. The response function in the scaling limit is

G−1(k, ω) = −iω +6(k, ω) (3)

with 6(k, ω) = kzσ (ω/kz). The zero-frequency self-energy (in other words, the relaxation
rate) is

6(k, 0) = 0kz (4)

and the zero-frequency correlation function can be written as

C(k, 0) = Dk−2α−D−z. (5)

Our contention is that the universal amplitude ratio02/Dλ2 can be written from the
diagrammatics ofG−1(k, ω) as

02/Dλ2 =
∞∑
n=1

In(D, α)α
n−1 (6)

and from the diagrammatics ofC(k, ω) as

02/Dλ2 =
∞∑
n=1

Jn(D, α)α
n−2. (7)

The integern labels the loops and thus equations (6) and (7) stand for a loop-wise expansion
for the universal number. We have usedα+ z = 2 which follows from Galilean invariance
and hence must always be respected. Equating02/Dλ2 from equations (6) and (7) yields
α as a function ofD.

We explain the technique by working with6(k, ω). The single-loop expression is

6(k, ω) = λ2
∫

dω′

2π

dDp

(2π)D
(p · q)(k · p)C(p, ω′)G(q, ω − ω′) p+ q = k. (8)

The frequency convolution is the tricky affair and gives rise to our first key observation. If
one is atD = Dc, whereα = 0, the line shape is Lorentzian and an expansion aboutα = 0
implies an expansion of the line shape about a Lorentzian form. With

C(k, ω) = Dk−D−2α[G(k, ω)+G∗(k, ω)]
we can, correct to first-order deviations from the Lorentzian shape, write equation (8) after
some algebra as

6(k, ω) = λ2
∫

dDp

(2π)D
(p · q)(k · p)
p2α+D

D

−iω +6(q, i6(q))+6(p, i6(p))
. (9)

Writing 6(k, i6(k)) = 0kz and6(k, 0) = 00k
z,

02

Dλ2
=
∫

dDp

(2π)D
(1 · p)[p · (1− p)]

p2α+D[(00/0)+ pz + |1− p|z] . (10)

The distinction between0 and00 is O(α).
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At this point we make the second key observation. The region of momentum space
which dominates the integral in equation (10) forα→ 0 is the regionp � 1.

Making the appropriate approximates in the integrand, the right-hand side of
equation (10) is

α

2D

∫
p>1

dDp

pD+α

and thus we can write

02

Dλ2
= α

2D

∫
p>1

dDp

(2π)D
1

pD+α
+
[ ∫

dDp

(2π)D
(1 · p)[p · (1− p)]

p2α+D((00/0)+ pz + |1− p|z)

− α

2D

∫
dDp

(2π)D
1

pD+2α

]
. (11)

The first term on the right-hand side of equation (11) yieldsD−1 and the terms in the
square brackets have to be evaluated asα→ 0. This yields the correction to the first term.

The integrand in the square brackets being required forα → 0, it is permissible to set
00 = 0 in evaluating the integral to this order of accuracy. The O(α) term so obtained
takes care of the self-energy, insertion-type, two-loop graphs. To complete the O(α) term,
one needs the leading-order contribution from the vertex-correction-type, two-loop graphs.
For leading order these are not necessary. To leading order, equation (11) yields

02

Dλ2
= SD

(2π)D
1

2D
(12)

whereSD is the surface area of aD-dimensional sphere.
Turning now to the correlation function, the single-loop, self-consistent answer is

C(k, ω) = λ2

2
|G(k, ω)|2

∫
dDp

(2π)D
dω′

2π
C(p, ω′)C(k − p,ω − ω′). (13)

Carrying out manipulations identical to those for6(k, ω) and equating the zero-
frequency parts, we obtain

02

Dλ2
= 1

2

∫
dDp

(2π)D
[(1− p) · p]2

pD+2α|1− p|D+2α

1

[p2−α + |1− p|2−α]
. (14)

Once again, we extract the high momentum (p � 1) part, and

02

Dλ2
= 1

4

∫
p>1

dDp

(2π)p
1

p2D+3α−2
+O(α,D − 2)

= 1

4

SD

(2π)D
1

D − 2+ 3α
+ higher order terms. (15)

Equating02/Dλ2 from equations (12) and (15),

D = 2D − 4+ 6α or α = 4−D
6

. (16)

It is clear from the above result thatα vanishes atD = 4, which is consequently the upper
critical dimension for the problem. It is interesting to note that atD = 1 our formula gives
the known exact result. This could, however, be accidental.
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